Script is a kind of structured knowledge extracted from texts, which contains a sequence of events. Based on such knowledge, script event prediction aims to predict the subsequent event. To do so, two aspects should be considered for events, namely, event description (i.e., what the events should contain) and event encoding (i.e., how they should be encoded). Most existing methods describe an event by a verb together with only a few core arguments (i.e., subject, object, and indirect object), which are not precise. In addition, existing event encoders are limited to a fixed number of arguments, which are not flexible to deal with extra information. Thus, in this paper, we propose the Rich Event Prediction (REP) framework for script event prediction. Fundamentally, it is based on the proposed rich event description, which enriches the existing ones with three kinds of important information, namely, the senses of verbs, extra semantic roles, and types of participants. REP contains an event extractor to extract such information from texts. Based on the extracted rich information, a predictor then selects the most probable subsequent event. The core component of the predictor is a transformer-based event encoder to flexibly deal with an arbitrary number of arguments. Experimental results on the widely used Gigaword Corpus show the effectiveness of the proposed framework.
translated by 谷歌翻译
就3D成像速度和系统成本而言,单摄像机系统投射单频模式是所有提议的条纹投影概要仪(FPP)系统中的理想选择。该系统需要具有强大的空间相解开(SPU)算法。但是,在复杂场景中,强大的SPU仍然是一个挑战。质量引导的SPU算法需要更有效的方法来识别相位图中不可靠的点,然后再拆卸。端到端深度学习SPU方法面临通用性和解释性问题。本文提出了一种混合方法,该方法结合了FPP中强大的SPU的深度学习和传统的路径跟踪。该混合型SPU方案比传统的质量引导的SPU方法表现出更好的鲁棒性,比端到端深度学习方案更好的解释性以及对看不见的数据的通用性。在多个照明条件和多个FPP系统的真实数据集上进行的实验,图像分辨率不同,条纹的数量,边缘方向和光学波长验证了所提出方法的有效性。
translated by 谷歌翻译
除了以实体为中心的知识之外,通常组织为知识图(千克),事件也是世界上的必不可少的知识,这触发了活动以kg(ekg)等事件为中心的知识表示形式的春天。它在许多机器学习和人工智能应用中起着越来越重要的作用,例如智能搜索,问答,推荐和文本生成。本文提供了历史,本体实例和应用视图的ekg综合调查。具体而言,要彻底地表征EKG,我们专注于其历史,定义,架构归纳,获取,相关代表图形/系统和应用程序。其中研究了发展过程和趋势。我们进一步总结了透视方向,以促进对EKG的未来研究。
translated by 谷歌翻译
安全已成为对现实世界系统应用深度加固学习的主要挑战之一。目前,诸如人类监督等外部知识的纳入唯一可以防止代理人访问灾难性状态的手段。在本文中,我们提出了一种基于安全模型的强化学习的新框架MBHI,可确保状态级安全,可以有效地避免“本地”和“非本地”灾难。监督学习者的合并在MBHI培训,以模仿人类阻止决策。类似于人类决策过程,MBHI将在执行对环境的动作之前在动态模型中推出一个想象的轨迹,并估算其安全性。当想象力遇到灾难时,MBHI将阻止当前的动作并使用高效的MPC方法来输出安全策略。我们在几个安全任务中评估了我们的方法,结果表明,与基线相比,MBHI在样品效率和灾难数方面取得了更好的性能。
translated by 谷歌翻译
时间动作检测(TAD)旨在确定未修剪视频中每个动作实例的语义标签和边界。先前的方法通过复杂的管道来解决此任务。在本文中,我们提出了一个具有简单集的预测管道的端到端时间动作检测变压器(TADTR)。给定一组名为“动作查询”的可学习嵌入,Tadtr可以从每个查询的视频中自适应提取时间上下文,并直接预测动作实例。为了适应TAD的变压器,我们提出了三个改进,以提高其所在地意识。核心是一个时间可变形的注意模块,在视频中有选择地参加一组稀疏的密钥片段。片段的完善机制和动作回归头旨在完善预测实例的边界和信心。 TADTR需要比以前的检测器更低的计算成本,同时保留了出色的性能。作为一个独立的检测器,它在Thumos14(56.7%地图)和HACS段(32.09%地图)上实现了最先进的性能。结合一个额外的动作分类器,它在ActivityNet-1.3上获得了36.75%的地图。我们的代码可在\ url {https://github.com/xlliu7/tadtr}上获得。
translated by 谷歌翻译
Dynamic Graph Neural Networks (DGNNs) have been broadly applied in various real-life applications, such as link prediction and pandemic forecast, to capture both static structural information and temporal characteristics from dynamic graphs. Combining both time-dependent and -independent components, DGNNs manifest substantial parallel computation and data reuse potentials, but suffer from severe memory access inefficiency and data transfer overhead under the canonical one-graph-at-a-time training pattern. To tackle the challenges, we propose PiPAD, a $\underline{\textbf{Pi}}pelined$ and $\underline{\textbf{PA}}rallel$ $\underline{\textbf{D}}GNN$ training framework for the end-to-end performance optimization on GPUs. From both the algorithm and runtime level, PiPAD holistically reconstructs the overall training paradigm from the data organization to computation manner. Capable of processing multiple graph snapshots in parallel, PiPAD eliminates the unnecessary data transmission and alleviates memory access inefficiency to improve the overall performance. Our evaluation across various datasets shows PiPAD achieves $1.22\times$-$9.57\times$ speedup over the state-of-the-art DGNN frameworks on three representative models.
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
The task of referring video object segmentation aims to segment the object in the frames of a given video to which the referring expressions refer. Previous methods adopt multi-stage approach and design complex pipelines to obtain promising results. Recently, the end-to-end method based on Transformer has proved its superiority. In this work, we draw on the advantages of the above methods to provide a simple and effective pipeline for RVOS. Firstly, We improve the state-of-the-art one-stage method ReferFormer to obtain mask sequences that are strongly correlated with language descriptions. Secondly, based on a reliable and high-quality keyframe, we leverage the superior performance of video object segmentation model to further enhance the quality and temporal consistency of the mask results. Our single model reaches 70.3 J &F on the Referring Youtube-VOS validation set and 63.0 on the test set. After ensemble, we achieve 64.1 on the final leaderboard, ranking 1st place on CVPR2022 Referring Youtube-VOS challenge. Code will be available at https://github.com/Zhiweihhh/cvpr2022-rvos-challenge.git.
translated by 谷歌翻译
Referring image segmentation aims to segment the target object described by a given natural language expression. Typically, referring expressions contain complex relationships between the target and its surrounding objects. The main challenge of this task is to understand the visual and linguistic content simultaneously and to find the referred object accurately among all instances in the image. Currently, the most effective way to solve the above problem is to obtain aligned multi-modal features by computing the correlation between visual and linguistic feature modalities under the supervision of the ground-truth mask. However, existing paradigms have difficulty in thoroughly understanding visual and linguistic content due to the inability to perceive information directly about surrounding objects that refer to the target. This prevents them from learning aligned multi-modal features, which leads to inaccurate segmentation. To address this issue, we present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features by guiding the interaction between vision and language through prior position information. Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment by comparing the features of the referred object with those of related objects. Extensive experiments on three benchmarks demonstrate our PCAN performs favorably against the state-of-the-art methods. Our code will be made publicly available.
translated by 谷歌翻译
Continual Learning is considered a key step toward next-generation Artificial Intelligence. Among various methods, replay-based approaches that maintain and replay a small episodic memory of previous samples are one of the most successful strategies against catastrophic forgetting. However, since forgetting is inevitable given bounded memory and unbounded tasks, how to forget is a problem continual learning must address. Therefore, beyond simply avoiding catastrophic forgetting, an under-explored issue is how to reasonably forget while ensuring the merits of human memory, including 1. storage efficiency, 2. generalizability, and 3. some interpretability. To achieve these simultaneously, our paper proposes a new saliency-augmented memory completion framework for continual learning, inspired by recent discoveries in memory completion separation in cognitive neuroscience. Specifically, we innovatively propose to store the part of the image most important to the tasks in episodic memory by saliency map extraction and memory encoding. When learning new tasks, previous data from memory are inpainted by an adaptive data generation module, which is inspired by how humans complete episodic memory. The module's parameters are shared across all tasks and it can be jointly trained with a continual learning classifier as bilevel optimization. Extensive experiments on several continual learning and image classification benchmarks demonstrate the proposed method's effectiveness and efficiency.
translated by 谷歌翻译